【TWSIAM DIGEST】2020年07月
TWSIAM Digest
發行日期:2020年07月01日
期別:2020年07月
本期主題:
[TWSIAM]第八屆台灣工業與應用數學會年會暨第三屆第三次會員大會(含理監事改選), 2020/07/24@國立成功大學
[TWSIAM]第八屆台灣工業與應用數學會學生海報論文競賽
[TWSIAM]109年第1期數學應用活動計畫申請(至2020年7月31日截止);第一類:開放軟體之學習與推廣活動補助/第二類:學生社團推廣數學應用活動補助
[其他] 2020 NCTS Summer Course on Random Walk and Parabolic Partial Differential Equations, 2020/07/20-2020/08/28
[其他] NCTS Mini Course on Manifold Learning, 2020/07/23-2020/07/24
[其他] 2020 NCTS Summer Course on Mathematical Biology, 2020/07/27-2020/08/05
台灣工業與應用數學會將於每月定期發行TWSIAM Digest。
如您有最新的研究議題或重要的研究成果,個人動態,研討會訊息、工作機會、文章與書籍的推廣與分享、計劃徵求、學會的贊助等,歡迎您踴躍分享第一手的相關資訊與此平台的會員們!
我們會在每月初發行TWSIAM Digest,期望藉由您提供的資訊分享,能夠促成更多台灣工業界、科技界與數學界的交流與發展!
投稿TWSIAM Digest:https://bit.ly/2CmHon6
-------------------------------------------------------
From:台灣工業與應用數學會<Email住址會使用灌水程式保護機制。你需要啟動Javascript才能觀看它>
日期:2020/07/24
類別:研討會訊息
主旨:第八屆台灣工業與應用數學會年會暨第三屆第三次會員大會(含理監事改選)
內容:第八屆台灣工業與應用數學會年會暨第三屆第三次會員大會訂於109年7月24日(星期五)假國立成功大學舉行,會議邀請國立臺灣大學資訊工程學系林智仁教授擔任大會主講,另規劃六場領域論壇,邀請各位會員共襄盛舉。
報名日期 : 2020年6月8日(一)至7月23日(四),線上報名。
會議註冊:https://twsiam2020.emath.tw/registration/info/
年會官網:https://twsiam2020.emath.tw/
-------------------------------------------------------
From:台灣工業與應用數學會<Email住址會使用灌水程式保護機制。你需要啟動Javascript才能觀看它>
類別:研討會訊息
主旨:第八屆台灣工業與應用數學會學生海報論文競賽
內容:因新型冠狀病毒肺炎疫情,第八屆台灣工業與應用數學會年會已延期至109年7月24日(星期五)舉辦,本次會議之海報論文展(poster paper)亦改由線上方式進行。歡迎工業與應用數學領域相關之學術及工程應用論文投稿。海報論文投稿經大會初步審查通過後,將以線上方式於年會官網發表,會場不張貼海報。2020年07月02、03日將進行線上問答。線上會議之連結方式將於網頁提供(若未在指定時間出席,視同放棄參賽資格)。
海報論文徵稿專區:https://twsiam2020.emath.tw/registration/poster/
年會官網:https://twsiam2020.emath.tw/
-------------------------------------------------------
From:<TWSIAM>
日期:2020/07/01-2020/07/31
主旨:109年第1期數學應用活動計畫申請
內容:本會為推廣數學應用之活動,自即日起徵求109年第1期數學應用活動計畫。
申請期別:109年第1期
申請截止:109/07/31前
活動執行:109/09/01-110/02/28
單據核銷:110/03/31前
申請類別共分兩類,第一類屬於開放軟體之學習與推廣活動補助,第二類屬於學生社團為推廣數學應用的活動補助,學生可自組以推廣數學應用為宗旨並在學校立案的學生社團,由學生社團負責人提出申請。補助項目為活動所需之材料費(壁報)、演講費及雜支等,並優先受理本會永久會員、普通會員及學生會員且其所屬單位加入本會團體會員者提出之申請案。
凡獲第二類補助之學生社團,應報名參加2021年台灣工業與應用數學會年會之學生海報論文展,展示成果,並請於核銷時提供至少一張活動照片至本會信箱。
如欲申請請至本會網站下載申請表格,並請於109年7月31日前將申請表email至本會信箱。
-------------------------------------------------------
From:NCTS
日期:2020/07/20-2020/08/28
類別:其他
主旨:2020 NCTS Summer Course on Random Walk and Parabolic Partial Differential Equations
課程背景與目的:The intended audience for this mini-course is advanced undergraduates. We do not assume the students to have had a course on measure theory or real analysis. But we do hope that the topics will be interesting enough to attract some of the students to go further for graduate studies on Probability, Parabolic PDE and related fields.
活動網址:http://www.ncts.ntu.edu.tw/events_3_detail.php?nid=210
-------------------------------------------------------
From:NCTS
日期:2020/07/23-2020/07/24
類別:其他
主旨:NCTS Mini Course on Manifold Learning
課程背景與目的:Manifold learning encompasses much of the disciplines of geometry, computation, and statistics, and has become an important research topic in data mining and statistical learning. The simplest description of manifold learning is that it is a class of algorithms for recovering a low-dimensional manifold embedded in a high-dimensional ambient space.
The goal of this mini-course is to introduce three of the important topics in manifold learning theory: PCA ( Principal Component Analysis), diffusion map and MDS (Multidimensional Scaling). We will introduce the theory and implementation of these topics. The prerequisite of this mini-course is linear algebra.
活動網址:http://www.ncts.ntu.edu.tw/events_3_detail.php?nid=214
-------------------------------------------------------
From:NCTS
日期:2020/07/27-2020/08/05
類別:其他
主旨:2020 NCTS Summer Course on Mathematical Biology
課程背景與目的:Mathematical modeling can play an important role in the understanding of mechanisms in biological systems. Motivated by this, we intend to introduce mathematical models of HIV infection, spatial segregation, and ecological systems with internal storage. Recently, Ergodic Theory has been successfully used to investigate the weakly repelling property of a compact and invariant set on the boundary, which is crucial when we utilize persistence theory to establish the possibility of coexistence for an ecosystem. Thus, we will also provide a brief introduction of Ergodic Theory in this course.
課程大綱與講者:
Lecture 1
Lecturer: Professor Chih-Hung Chang (張志鴻) , National University of Kaohsiung
Title: A Short Course for Ergodic Theory
Abstract:Ergodic theory studies the long time behaviour of dynamical systems. This line of investigation has its origin in Poincare's investigations in statistical physics more than one hundred years ago. However, in the meantime ergodic theory has found many remarkable applications in various branches of mathematics. In this short course, I will give an introduction to some classical results, such as Poincare's recurrence theorem, Birkhoff ergodic theorem, and Furstenberg's multiple recurrence theorem. Meanwhile, some applications like the ergodic viewpoint of Borel's normal number theorem will also be covered.
Lecture 2
Lecturer: Professor Chang-Yuan Cheng (鄭昌源), National Pingtung University
Title: Mathematical Studies for HIV infection
Abstract:Human immunodeficiency virus type 1 (HIV-1) is one of the most and intensely studied viral pathogens in the history of science. Mathematical modeling has helped to improve our understanding of the infection as well as the pharmacodynamics within the host under a drug therapy. However, from recent reports, the spacial heterogeneity related to either the virus environments or the pharmacodynamics is a significant issue that deserves more attentions. We begin the sequel from introducing the routes of infection and virus environments, then formulating the drug efficacy, and studying its critical effect on viral dynamics via a perturbation technique. The lecture will include four parts:
(1) Basic viral dynamics in ODE/DDE/aged models
(2) Multi-compartmental virus models
(3) Pharmacodynamics within the host under a drug therapy
(4) A perturbation technique to determine viral extinction/persistence
Lecture 3
Lecturer: Professor Chang-Hong Wu (吳昌鴻), National Chiao Tung University
Title: Spatial Segregation in Competition Models
Abstract:The understanding of the spatial behavior of the interacting species is one fundamental issue in mathematical ecology. In particular, spatial segregation of species is a commonly observed phenomenon.This phenomenon has been studied widely in the literature. Generally speaking, it may occur when the competition between species is very strong. We will introduce some reaction-diffusion systems to approximate such a phenomenon. Furthermore, the limiting problems may help us understand the formation of spreading front from the modeling viewpoint and bring some mathematical models that may describe the invasion of species. In this lecture, we plan to divide the discussion into three parts:
(1) A brief introduction regarding the spatial segregation phenomenon
(2) The Fisher-Stefan model and some competition models
(3) Some applications.
Lecture 4
Lecturer: Professor Feng-Bin Wang (王埄彬), Chang Gung University
Title: Applications of Theory of Monotone Dynamical System and Uniform Persistence to Ecological Models with Internal Storage
Abstract:Competition for resources is a fundamental interaction between species and there has been a lot of experimental and theoretical analyses of nutrient-limited phytoplankton growth and competition studies. The simplest competition models use one ordinary differential equation to govern the dynamics of each species. These population dynamics are coupled to dynamics of one or more resources by assuming a constant quota of nutrient per individual, or equivalently, a constant yield of individuals from consumption of a unit of resource. In fact, quotas may vary, leading to variable-internal-stores models. In this talk, I shall introduce several systems modeling nutrient consumption, storage, and population growth in temporally homogeneous/varying environments (ODEs system involved in constant/time-periodic coefficients). In order to obtain the analytical analysis of the models, I shall further introduce the theory of monotone dynamical system and uniform persistence.